일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 딥러닝
- 데이터베이스
- 데이터
- Database
- 데이터 수집
- pythone
- 시각화
- MariaDB
- 알고리즘기초
- python기초
- 머신러닝
- 해석
- 데이터 가공
- 크롤링(crawling)
- python
- HeidiSQL
- SQL예제
- 회귀모델
- sklearn
- 선형회기모델
- Deep Learning
- pandas
- 데이터 분석
- 파이썬
- 정확도
- 예측
- tensorflow
- 데이터전처리
- 훈련
- keras
- Today
- Total
목록KNeighborsClassifier (4)
코딩헤딩

https://coding-heading.tistory.com/84 [ML(머신러닝)] 머신러닝 기초 3-2 https://coding-heading.tistory.com/83 [ML(머신러닝)] 머신러닝 기초 3-1 - 정의된 변수 이름은 없음 - 훈련데이터 : 훈련(fit)에 사용되는 데이터 : (훈련 독립변수) train_input, train-x, X_train : (훈련 종속변수) tra coding-heading.tistory.com 위 글과 이어집니다. 1. 데이터 수집 2. 독립변수 2차원과 종속변수 1차원 데이터로 취합 3. 훈련, 검증, 테스트 데이터로 섞으면서 분리 -----------3번 후 정규화 진---------- 4. 훈련, 검증, 테스트 데이터 중에 독립변수에 대해서만 정규..

https://coding-heading.tistory.com/83 [ML(머신러닝)] 머신러닝 기초 3-1 - 정의된 변수 이름은 없음 - 훈련데이터 : 훈련(fit)에 사용되는 데이터 : (훈련 독립변수) train_input, train-x, X_train : (훈련 종속변수) train_target, train_y, Y_ train - 검증데이터 : 훈련 정확도(score)에 사 coding-heading.tistory.com 위 글과 이어집니다. * 머신러닝, 딥러닝에서 사용하는 테이터 분류기 함수 from sklearn.model_selection import train_test_split - 랜덤 하게 섞으면서 두 개(훈련 : 테스트)의 데이터로 분류함 train_input, test_inp..

- 정의된 변수 이름은 없음 - 훈련데이터 : 훈련(fit)에 사용되는 데이터 : (훈련 독립변수) train_input, train-x, X_train : (훈련 종속변수) train_target, train_y, Y_ train - 검증데이터 : 훈련 정확도(score)에 사용되는 데이터 : (검증 독립변수) val_input, val-x, X_val : (검증 종속변수) val_target, val_y, Y_ val - 테스트데이터 : 예측(predict)에 사용되는 데이터 : (테스트 독립변수) test_input, test-x, X_test : (테스트 종속변수) test_target, test_y, Y_ test 앞으로 변수의 이름은 위와 같이 통일한다. 1. 훈련과 테스트를 비율로 먼저 나누..

* 훈련 모델 처리 절차 1. 데이터 전처리 2. 데이터 정규화 3. 훈련 : 검증 : 테스트 데이터로 분류 (또는 훈련 : 테스트 데이터로 분류) - 6 : 2 : 2 또는 7 : 2 : 1, 데이터가 작은 경우에는 8 : 2 또는 7 : 3 정도로 분류 4. 모델 생성 5. 모델 훈련 [*fit(함수)] (훈련 데이터와 검증 데이터 사용, 또는 테스트 데이터) 6. 모델 평가 (모델 선정, 검증데이터) 7. 하이퍼파라미터 튜닝 8. 5~6번 진행 9. 최종테스트 [*predict, 예측] (테스트 데이터 사용) * 생선구분하기 방어와 도미 데이터 데이터 처리 방어와 도미 데이터 - 생선의 종류를 분류(구분)하기 위한 모델 생성을 위해 독립변수와 종속변수로 데이터를 가공해야 함 - 독립변수(x) : 길..